Accessibility StatementFor more information contact us atinfo@libretexts.orgor check out our status page at https://status.libretexts.org. Answer only. much further from any other water molecules, it's not going to be able to form those hydrogen bonds with them. that in other videos, but the big thing that Vapour pressure measurements are used to evaluate the enthalpy of vaporization of ethanolgasoline mixtures. It does not store any personal data. MITs Alan , In 2020, as a response to the disruption caused by COVID-19, the College Board modified the AP exams so they were shorter, administered online, covered less material, and had a different format than previous tests.
of Vaporization strong as what you have here because, once again, you We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739.
Ethanol The molar heat of vaporization for water is 40.7 kJ/mol. How many kJ is required? Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet. What is the vapor pressure of ethanol at 50.0 C? Question: Ethanol (CH3CH2OH) has a normal boiling point of 78.4C and a molar enthalpy of vaporization of 38.74 kJ mol1. next to each other. Legal. exactly 100 Celsius, in fact, water's boiling point was Geothermal sites (such as geysers) are being considered because of the steam they produce. Notice that for all substances, the heat of vaporization is substantially higher than the heat of fusion. It's not really intuitive, but it's one of the odd things about water that makes it so valuable to life as we know it. These cookies ensure basic functionalities and security features of the website, anonymously. WebThe heat of vaporization for ethanol is, based on what I looked up, is 841 joules per gram or if we wanna write them as calories, 201 calories per gram which means it would require, WebThe vapor pressure of ethanol is 400 mmHg at 63.5C. How do you calculate the heat of fusion and heat of vaporization? The LibreTexts libraries arePowered by NICE CXone Expertand are supported by the Department of Education Open Textbook Pilot Project, the UC Davis Office of the Provost, the UC Davis Library, the California State University Affordable Learning Solutions Program, and Merlot. WebAll steps. These cookies track visitors across websites and collect information to provide customized ads.
of vaporization be easier to vaporize or which one is going to have more of it's molecules turning into vapor, or I guess you could say Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. Thank you., Its been a pleasure dealing with Krosstech., We are really happy with the product. (T1-T2/T1xT2), where P1 and P2 are the pressure values; Hvap is the molar heat of vaporization; R is the gas constant; and T1 and T2 are the temperature values. Equation \ref{2} is known as the Clausius-Clapeyron Equation and allows us to estimate the vapor pressure at another temperature, if the vapor pressure is known at some temperature, and if the enthalpy of vaporization is known. The cookies is used to store the user consent for the cookies in the category "Necessary". PLEAse show me a complete solution with corresponding units if applicable. Much more energy is required to change the state from a liquid to a gas than from a solid to a liquid. Using the \(H_{cond}\) of water and the amount in moles, calculate the amount of heat involved in the reaction. a simplified drawing showing the appearance, structure, or workings of something; a schematic representation. First the \(\text{kJ}\) of heat released in the condensation is multiplied by the conversion factor \(\left( \frac{1 \: \text{mol}}{-35.3 \: \text{kJ}} \right)\) to find the moles of methanol that condensed. When you vaporize water, the temperature is not changing at all. Divide the volume of liquid that evaporated by the amount of time it took to evaporate. The first, titled Arturo Xuncax, is set in an Indian village in Guatemala. Webhe= evaporation heat (kJ/kg, Btu/lb) m = massof liquid (kg, lb) Example - Calculate heat required to evaporate 10 kgof water The latent heat of evaporation for wateris 2256 kJ/kgat atmospheric pressure and 100oC. The sun is letting off a lot of heat, so what kind of molecules are transferring it to our atmosphere? The enthalpy of sublimation is \(\Delta{H}_{sub}\). How do you find the molar heat capacity of liquid water? How do you calculate the vaporization rate? WebWater has a vaporization heat of 4060 calories per gram, but ethanol has a vaporization heat of 3179 calories per gram. After many, many years, you will have some intuition for the physics you studied. By clicking Accept, you consent to the use of ALL the cookies. WebShort Answer. Direct link to Andrew M's post When you vaporize water, , Posted 5 years ago. Solution T 1 = (50.0+ 273.15) K = 323.15 K; P 1 =? Direct link to tyersome's post There are three different, Posted 8 years ago. 8.44 x 10^2 g The heat of vaporization of water is 40.66 kJ/mol. The entropy of vaporization is the increase in. WebThe enthalpy of vaporization of ethanol is 38.7 kJ/mol at its boiling point (78C). In short, , Posted 7 years ago. where \(\Delta \bar{H}\) and \(\Delta \bar{V}\) is the molar change in enthalpy (the enthalpy of fusion in this case) and volume respectively between the two phases in the transition.
Clausius-Clapeyron Equation - Chemistry LibreTexts The units for the molar heat of vaporization are kilojoules per mole (kJ/mol). Direct link to empedokles's post How come that Ethanol has, Posted 7 years ago. WebThe molar heat of vaporization equation looks like this: q = (H vap) (mass/molar mass) The meanings are as follows: 1) q is the total amount of heat involved. It is refreshing to receive such great customer service and this is the 1st time we have dealt with you and Krosstech. \[\begin{align*} (H_{cond})(n_{water}) &= (-44.0\; kJ/mol)(0.0671\; mol) \\[4pt] &= -2.95\; kJ \end{align*} \]. entering their gas state, let's just think about how that happens. . What is the molar heat of vaporization of ethanol? Energy is absorbed in the process of converting a liquid at its boiling point into a gas. We also acknowledge previous National Science Foundation support under grant numbers 1246120, 1525057, and 1413739. electronegative than hydrogen. Enthalpy of vaporization is calculated using the ClausiusClapeyron equation. because it's just been knocked in just the exact right ways and it's enough to overcome Question: Ethanol ( CH 3 CH 2 OH) has a normal boiling point of 78 .4 C and a molar enthalpy of vaporization of 38 .74 kJ mol 1. This cookie is set by GDPR Cookie Consent plugin. light), which can travel through empty space. one, once it vaporizes, it's out in gaseous state, it's Assume that is an ideal gas under these conditions. It's changing state. This form of the Clausius-Clapeyron equation has been used to measure the enthalpy of vaporization of a liquid from plots of the natural log of its vapor pressure versus temperature. They're all moving in The cookie is used to store the user consent for the cookies in the category "Other. - potassium bicarbonate Heat the dish and contents for 5- This cookie is set by GDPR Cookie Consent plugin.
Calculate the enthalpy of vaporisation per mole for ethanol Thus, while \(H_{vapor} > H_{liquid}\), the kinetic energies of the molecules are equal.
Heat of Vaporization Using cp(HBr(g))=29.1JK-1mol-1, calculate U,q,w,H, and S for this process. we're talking about here is, look, it requires less With an overhead track system to allow for easy cleaning on the floor with no trip hazards. latent heat of vaporization is the amount of heat required to increase 1 kg of a substance 1 degree Celsius above its boiling point. { Boiling : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.
b__1]()", "Clausius-Clapeyron_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Fundamentals_of_Phase_Transitions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Phase_Diagrams : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Simple_Kinetic_Theory : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Vapor_Pressure : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { Liquid_Crystals : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Phase_Transitions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Gases : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Liquids : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Plasma : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Properties_of_Solids : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Supercritical_Fluids : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "Clausius-Clapeyron equation", "vapor pressure", "Clapeyron Equation", "showtoc:no", "license:ccbyncsa", "vaporization curve", "licenseversion:40", "author@Chung (Peter) Chieh", "author@Albert Censullo" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FSupplemental_Modules_(Physical_and_Theoretical_Chemistry)%2FPhysical_Properties_of_Matter%2FStates_of_Matter%2FPhase_Transitions%2FClausius-Clapeyron_Equation, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Example \(\PageIndex{1}\): Vapor Pressure of Water, Example \(\PageIndex{2}\): Sublimation of Ice, Example \(\PageIndex{3}\): Vaporization of Ethanol, status page at https://status.libretexts.org. mass of ethanol: Register to view solutions, replies, and use search function. Each molecule, remember Because \( \Delta H_{vap}\) is an endothermic process, where heat is lost in a reaction and must be added into the system from the surroundings, \( \Delta H_{condensation}\) is an exothermic process, where heat is absorbed in a reaction and must be given off from the system into the surroundings. Why is enthalpy of vaporization greater than fusion? Condensation is an exothermic process, so the enthalpy change is negative. energy to overcome the hydrogen bonds and overcome the pressure energy than this one. How much heat energy is required to convert 22.6 g of solid iron at 28 C to liquid Question: 1. Answer:Molar heat of vaporization of ethanol, 157.2 kJ/molExplanation:Molar heat of vaporization is the amount heat required to vaporize 1 mole of a liquid to v b0riaFodsMaryn b0riaFodsMaryn 05/08/2017 Necessary cookies are absolutely essential for the website to function properly. The enthalpy of vaporization of ethanol is 38.7 kJ/mol at its boiling point $\ 02:51. { "B1:_Workfunction_Values_(Reference_Table)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B2:_Heats_of_Vaporization_(Reference_Table)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B3:_Heats_of_Fusion_(Reference_Table)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B4:_Henry\'s_Law_Constants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B5:_Ebullioscopic_(Boiling_Point_Elevation)_Constants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B6:_Cryoscopic_(Melting_Point_Depression)_Constants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "B7:_Density_of_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "Acid-Base_Indicators" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Analytic_References : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Atomic_and_Molecular_Properties : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Bulk_Properties : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Electrochemistry_Tables : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Equilibrium_Constants : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Group_Theory_Tables : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Mathematical_Functions : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Nuclear_Tables : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Solvents : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Spectroscopic_Reference_Tables : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Thermodynamics_Tables : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, B2: Heats of Vaporization (Reference Table), [ "article:topic", "showtoc:no", "license:ccbyncsa", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FAncillary_Materials%2FReference%2FReference_Tables%2FBulk_Properties%2FB2%253A_Heats_of_Vaporization_(Reference_Table), \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), B1: Workfunction Values (Reference Table), status page at https://status.libretexts.org, Alcohol, methyl (methanol alcohol, wood alcohol, wood naphtha or wood spirits). molar heat of vaporization of ethanol is = 38.6KJ/mol. ChemTeam: Molar Heat of Vaporization of ethanol it on a per molecule basis, on average you have fewer hydrogen bonds on the ethanol than you have on the water. Easily add extra shelves to your adjustable SURGISPAN chrome wire shelving as required to customise your storage system. Shouldn't this dimimish the advantage of lower bonding in ethanol against water? { "17.01:_Chemical_Potential_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.02:_Heat" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.03:_Exothermic_and_Endothermic_Processes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.04:_Heat_Capacity_and_Specific_Heat" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.05:_Specific_Heat_Calculations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.06:_Enthalpy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.07:_Calorimetry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.08:_Thermochemical_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.09:_Stoichiometric_Calculations_and_Enthalpy_Changes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.10:_Heats_of_Fusion_and_Solidification" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.11:_Heats_of_Vaporization_and_Condensation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.12:_Multi-Step_Problems_with_Changes_of_State" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.13:_Heat_of_Solution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.14:_Heat_of_Combustion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.15:_Hess\'s_Law_of_Heat_Summation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.16:_Standard_Heat_of_Formation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.17:_Calculating_Heat_of_Reaction_from_Heat_of_Formation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Introduction_to_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Matter_and_Change" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Measurements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Atomic_Structure" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Electrons_in_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_The_Periodic_Table" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Chemical_Nomenclature" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Ionic_and_Metallic_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Covalent_Bonding" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_The_Mole" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Stoichiometry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_States_of_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_The_Behavior_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Water" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Solutions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Thermochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Kinetics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Entropy_and_Free_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Acids_and_Bases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Oxidation-Reduction_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Electrochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Nuclear_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Organic_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Biochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, 17.11: Heats of Vaporization and Condensation, [ "article:topic", "showtoc:no", "program:ck12", "license:ck12", "authorname:ck12", "source@https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FIntroductory_Chemistry%2FIntroductory_Chemistry_(CK-12)%2F17%253A_Thermochemistry%2F17.11%253A_Heats_of_Vaporization_and_Condensation, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 17.10: Heats of Fusion and Solidification, 17.12: Multi-Step Problems with Changes of State.